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Wake-induced forces and torques on a
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The numerical results obtained by Mougin & Magnaudet (Phys. Rev. Lett. vol. 88,
2002a, 14502) for the flow past a freely moving spheroidal bubble with a prescribed
spheroidal shape are processed to analyse the evolution of the forces and torques
experienced by the bubble when it rises along a planar zigzag and a circular helix.
It is found that, as soon as the wake becomes three-dimensional, a lateral force with
a strength comparable with that of the buoyancy force occurs. This force, together
with the corresponding torque, drives the horizontal movements of the bubble. The
force and torque balances reveal how these wake-induced effects are balanced by
added-mass effects to make possible the existence of zigzag and helical motions along
which the angle between the velocity and the symmetry axis of the bubble remains
small. The evolution of the wake during the zigzag indicates that the sign of the
trailing vortices, and thus that of the wake-induced force and torque, is governed by
the rotation of the bubble and reveals the sensitivity of the wake dynamics to the
changes in the bubble velocity and rotation rate.

1. Introduction
Path instability of millimetric bubbles rising in water has attracted attention for a

long time (Prosperetti et al. 2003). However the origin of this phenomenon remained
uncertain until recently. An overview of experimental and theoretical investigations of
this problem during the second half of the last century is given by Magnaudet & Eames
(2000). Removing several possible causes of path instability, such as shape oscillations
or contamination by surfactants, Mougin & Magnaudet (2002a, hereinafter referred
to as MM) achieved a full numerical determination of the path of an oblate bubble
with a prescribed shape rising freely in a slightly viscous Newtonian fluid. They
showed that wake instability is the primary cause of path instability. In particular
they observed that, as soon as two counter-rotating trailing vortices appear behind
the bubble, its path changes from rectilinear to zigzag. Based on that numerical study,
the present paper focuses on a description of the forces and torques experienced
by the bubble along its path. Achieving an equivalent determination of forces and
torques through a laboratory experiment is very challenging; only partial answers
have yet been provided (Ellingsen & Risso 2001), as such a determination requires all
components of the translational and rotational velocities of the bubble centroid to
be known along the whole path. In addition to providing accurate force and torque
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estimates, the goal of the present investigation is also to obtain some insight into the
way the kinematic characteristics of the bubble motion influence wake-induced effects.
More precisely, as we allow for the feedback of the wake on the bubble motion, we
can observe how the changes in the translational and rotational bubble velocities
affect the wake dynamics, in contrast to the case of a fixed body. This in turn raises
questions concerning the way the sensitivity of these dynamics to the body kinematics
can be taken into account in simple models.

2. Numerical determination of the hydrodynamic forces and torques
The numerical approach followed by MM (thoroughly described in Mougin &

Magnaudet 2002b) to determine the path of a freely moving bubble consisted in
solving in a coupled manner the Navier–Stokes equations for the induced-flow field
and the force and torque balances expressing Newton’s second law for the bubble.
It is well-established that when a fixed-shape body accelerates in an incompressible,
time-dependent viscous flow, the hydrodynamic effects on it due to the instantaneous
acceleration it communicates to the surrounding fluid (commonly referred to as added-
mass effects) only depend on the geometry and instantaneous relative acceleration of
the body, not on the flow characteristics (Wu 1981; Quartapelle & Napolitano 1983;
Howe 1995). This key result, which for a sphere reduces to the fact that the added-
mass coefficient equals 1/2, whatever the flow Reynolds number, acceleration strength,
and nature of the dynamic boundary condition at the body surface (e.g. no-slip or
stress-free) (Magnaudet & Eames 2000; Mougin & Magnaudet 2002b), may be used
to separate added-mass effects from forces and torques due to vorticity (hereinafter
termed ‘vortical’ forces and torques). More precisely, since the components of the
added-mass tensor are unaffected by viscous effects, they can be evaluated from
irrotational flow theory (Lamb 1945). Therefrom, the Kirchhoff–Kelvin equations
which govern the general motion of a rigid body in an inviscid fluid at rest at infinity
can easily be generalized to a viscous flow (Howe 1995). In the case of a body
characterized by a mass m, an inertia tensor � and a volume ϑ and having three
perpendicular symmetry planes, such as a spheroid, these equations may be written
in the form

(m�+ �) · dU
dt

+ Ω × ((m�+ �) · U) = Fω + (m − ρϑ)g, (2.1a)

(�+ �) · dΩ

dt
+Ω × ((�+ �) · Ω) + U × (� · U) = Γ ω, (2.1b)

where � and � are the symmetric translational and rotational added-mass tensors,
respectively, � is the unit tensor, Fω and Γ ω are the vortical force and torque acting
on the body, respectively, g is the gravity vector and ρ is the fluid density which
we assume to be uniform (like the body density). Equations (2.1) are written in a
coordinate system having its origin fixed in the laboratory frame and its axes parallel
at each instant to axes attached to the body, so that � and � do not depend on time
and the body translational and rotational velocities U and Ω are those measured by
a fixed observer but with components projected onto axes rotating with the body.
Note that Fω and Γ ω contain all the effects due to the existence of vorticity in the
flow, including possible history effects.

To obtain the various terms in (2.1), MM solved the Navier–Stokes equations for
the incompressible body-induced flow, using the same rotating system of axes with
origin fixed in the laboratory frame. The corresponding form of the Navier–Stokes
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equations is (Mougin & Magnaudet 2002b)

∂V
∂t

+Ω × V + (V − W ) · ∇V = ∇ · Σ, ∇ · V = 0, (2.2)

where W = U + Ω × r is the velocity of a geometrical point located at a distance r
from the body centre and Σ = −(P/ρ)� + ν(∇V +t ∇V ) is the stress tensor of the
corresponding flow (ν is the kinematic viscosity), P and V being the local pressure
and velocity, respectively. In the case where the body is a fixed-shaped bubble moving
in a pure liquid, the appropriate boundary conditions express impermeability and
zero surface shear stress, so that the flow at the body surface obeys

V · n = W · n, n × ((∇V +t ∇V ) · n) = 0, (2.3)

where n is the outer unit normal to the bubble surface S. The velocity disturbance
vanishes far away from the bubble, so that V → 0 for ‖r‖ → ∞. After each time
step, the stress tensor Σ has to be integrated over the bubble surface to obtain the
hydrodynamic force F and torque Γ , respectively defined by

F =

∫
S

Σ · n dS, Γ =

∫
S

r × (Σ · n) dS. (2.4)

In the computational strategy developed by Mougin & Magnaudet (2002b), V and Ω

are kept constant within each time step of the resolution of (2.2)–(2.3), which results
in F and Γ containing (through the pressure P ) all ‘quasi-steady’ hydrodynamic
contributions but not accounting for the impulsive effects of the time rate-of-change
terms dU/dt and dΩ/dt . Therefore, knowing F and Γ from (2.4), the generalized
Kirchhoff–Kelvin equations (2.1) are solved in the form

(m�+ �) · dU
dt

+ mΩ × U = F + (m − ρϑ)g, (2.5a)

(�+ �) · dΩ

dt
+ Ω × (� · Ω) = Γ . (2.5b)

The numerical treatment of (2.2)–(2.5) is described by Mougin & Magnaudet
(2002b), including various test cases and an analysis of the time accuracy of the
complete integration algorithm.

Results discussed below were obtained by assuming that the bubble has negligible
inertia compared to the surrounding liquid, which results in m =0 and �= 0 in (2.5),
implying that the total hydrodynamic force and torque acting on the bubble are zero at
all time. For an oblate spheroid, � (resp. �) is diagonal if the axes of the coordinate
system are chosen parallel to the principal axes of the body, and only has two
(resp. one) independent non-zero components which may easily be evaluated (Lamb
1945) as a function of the body equivalent radius Req = (3ϑ/4π)1/3 and aspect ratio
χ = b/a, a and b denoting the minor and major semi-axes, respectively (ϑ = 4

3
πab2).

Owing to the rotational symmetry of the body, the time rate-of-change term in (2.5b)
vanishes in the direction x parallel to the symmetry axis. Moreover, since the shear-
free condition in (2.3) implies that Σ · n is parallel to n at any point on the bubble
surface, the x-component of the torque Γ is also zero. Therefore it turns out that the
x-component of Ω is immaterial and can be set to zero without loss of generality.
This choice, combined with the rotational symmetry of � about the x-axis makes all
three components of the term Ω ×(� · Ω) in (2.1b) vanish identically. Other individual
‘quasi-steady’ added-mass contributions Ω × (�· U) in (2.1a) and U × (� · U) in (2.1b)
were evaluated by using values of U and Ω at the corresponding time step. Therefrom,
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Figure 1. Path characteristics of an oblate bubble with χ = 2.50 and Ga = 138 rising from
rest. (a) Position of the bubble centroid as a function of time (horizontal scales have been
magnified to make the characteristics of the zigzag and helical stages more apparent);
(b) evolution of the vertical (thick line) and horizontal velocity components of the bubble
centroid (dashed line: ya-component; thin line: za-component; (xa, ya, za) denotes a fixed
system of axes).

the vortical force Fω (resp. torque Γ ω) was obtained by noting that the difference
between (2.1) and (2.5) implies Fω = F + Ω × (� · U) (resp. Γ ω = Γ + U × (� · U)).

3. Evolution of the forces and torques along the path
3.1. Preliminary considerations

MM detailed the evolution of the path and wake of an oblate bubble with a fixed
aspect ratio χ = 2.5, and a Galileo number Ga = (gR3

eq)
1/2/ν = 138 corresponding to

an air bubble with an equivalent radius Req = 1.25 mm rising in water under standard
conditions. The corresponding trajectory is reproduced in figure 1 together with
the evolution of the three velocity components of the bubble centroid. According to
figure 1, the bubble successively follows a straight path, a planar zigzag and eventually
a helical path. The first bifurcation of the system corresponds to a breaking of the
axial symmetry of the initial wake, as also reported for a freely moving rigid sphere
(Jenny, Dusek & Bouchet 2004). Similar to the case of a fixed oblate bubble, the
subsequent three-dimensional wake structure, essentially made up of two counter-
rotating vortices, still preserves a symmetry with respect to a plane perpendicular to
that of the vortices and containing the symmetry axis of the bubble (see Magnaudet
& Mougin 2006 for a detailed discussion on the origin of this primary instability).
This is why during its first stage the non-rectilinear path of the bubble remains in a
plane. In contrast, the second bifurcation which marks the onset of the zigzag/helix
transition, corresponds to a breaking of this planar symmetry: the two vortices wrap
around one another, allowing the trajectory to become three-dimensional. During the
zigzag and the helical stages, the magnitude of the horizontal velocity is of the order
of the gravitational velocity (gReq)

1/2 (figure 1). The dimensionless frequency of the
zigzag f (Req/g)1/2 is about 0.045 while that of the helix is about 0.055, which for a
real bubble corresponds to f ≈ 4.0 Hz and f ≈ 4.9 Hz, respectively. Here we focus on
the same case to analyse the evolution of the various contributions to the force and
torque along the bubble path.

To discuss this evolution, we use a right-handed system of axes (x, y, z) in which x is
parallel to the instantaneous direction of the minor axis of the bubble which is initially
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Figure 2. Evolution of the components of Fω and Γ ω . Thick line: x-component; dashed
line: y-component; thin line: z-component.
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Figure 3. Force balance in the streamwise direction. Thick line: Fωx; thin line: −ρϑgx;
dashed line: −[� · dU/dt]x; dashed-dotted line: −[Ω × (� · U)]x .

vertical. Obviously the initial choice of y and z is arbitrary. Since path instability
is triggered by imposing initially a small horizontal sinusoidal disturbance onto the
gravity vector, the direction of this disturbance is taken as y; this is why the zigzag
later is in the (x, y)-plane. Then the y and z axes evolve according to the condition
Ωx =0. The evolution of the three components of the vortical force Fω (normalized
by the buoyancy force ρgϑ) and of the two non-zero components of the vortical
torque Γ ω (normalized by ρgReqϑ) are plotted in figure 2. During the rectilinear stage
(t(g/Req)

1/2 < 25, approximately), the vortical torque is zero and the only non-zero
component of Fω is Fωx which corresponds to a viscous drag force. As shown by
figure 3, this force increases from zero since the bubble starts from rest and the con-
stant buoyancy force is balanced by the sum of Fωx and the added-mass contribution
−[� · dU/dt]x . The onset of the zigzag provoked by the wake instability coincides
with the occurrence of a non-zero transverse component Fωy and of a torque Γωz.
During the zigzag, Fωy changes sign every half-period and reaches maximum values
of about 0.85 times the buoyancy force. This is a remarkable feature, as it shows that
the two counter-rotating vortices which result from the wake instability are capable of
generating a force whose magnitude is comparable with that of the external driving
force. We note that the oscillations of Fωx have a much smaller amplitude, typically
10 % of the buoyancy force. Their frequency is twice that of Fωy and Γωz merely
because the latter two quantities change sign every half-period of the zigzag, while Fωx

reaches a maximum at each extremity of the zigzag. We also note from figure 3 that,
owing to the time variations of Ux , the streamwise added-mass contribution remains
significant during the zigzag, being typically about 13 % of the buoyancy force.
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Figure 4. Force and torque balances in the transverse directions during the zigzag. (a) Force
balance in the y-direction. (b) Detail of the force balance during one period (thick line:
Fωy; thin line: −ρϑgy; dashed line: −Ωz(� · U)x; dotted line: −[� · dU/dt]y). (c) Torque
balance in the z-direction (thick line: Γωz; dashed line: Uy(� · U)x − Ux(� · U)y; dotted line:
−[� · dΩ/dt]z).

During the zigzag/helix transition, the magnitude of the vortical force (resp. torque)
decreases by about 25 % (resp. 40 %). This is consistent with the evolution of the
horizontal displacements of the bubble displayed in figure 1 where it is seen that
the amplitude of these crest-to-crest displacements decreases from 9.6Req during the
zigzag to 6.2Req during the helical motion. Once the helical motion is established, the
bubble reaches a constant rise velocity and Fωx keeps a constant value which balances
the streamwise buoyancy contribution (see figure 3). With the choice we made for the
definition of the y and z axes, the corresponding components of Fω and Γ ω oscillate
in time. However figure 2 clearly indicates that these components are 90◦ out of phase,
so that F 2

ωy + F 2
ωz and Γ 2

ωy + Γ 2
ωz are constant. In other words, there is another system

of rotating axes (x, y ′, z′) in which the transverse components of the force and torque
appear stationary, in agreement with the observation of MM that during the helical
stage the wake structure is stationary in the reference frame that rotates ‘naturally’
with the bubble along its helical trajectory (see also figure 8 below). Noting that for
a fixed observer the bubble rotates at a rate ω about the vertical axis and rises with
a constant pitch angle θ when it describes a perfect circular helix, it may be shown
that this second system of axes, in which z′ is such that the (x, z′)-plane contains the
gravity vector and y ′ is horizontal and perpendicular to the path, simply differs from
the first one by a rotation at a rate ω cos θ about the x-axis. The latter system of axes
will be used below, as it makes the comparison with the planar zigzag easier since
the only non-zero component of Ω is Ωz′ . Note that the shape of the three successive
stages of the bubble path can also be characterized by considering the evolution of
‖Γ ω‖ and ‖Fω · Γ ω‖: while both are zero when the path is straight, only the second is
zero during the zigzag and they are eventually both non-zero during the helical stage.

3.2. Force and torque balances in the transverse directions

The various contributions to the force (resp. torque) balance along the y- (resp. z-)
direction during the zigzag stage are plotted in figure 4. In addition to Fωy , this
lateral force balance involves the centripetal added-mass contribution −Ωz(� · U)x
which opposes the bubble acceleration normal to the path, the transverse added-mass
contribution −[� · dU/dt]y which opposes the time variations of the lateral velocity
component Uy and the lateral projection of the buoyancy force −ρϑgy . It is clearly
seen in figure 4 that [�· dU/dt]y is much weaker than the other three contributions,
which results in small variations of the lateral velocity. The torque balance in the z-
direction reveals a similar behaviour. More precisely, the restoring added-mass torque
Uy(� · U)x − Ux(� · U)y which results from both the geometrical anisotropy of the
bubble and the existence of a non-zero transverse velocity almost balances the vortical



Wake-induced forces and torques on a zigzagging/spiralling bubble 191

0 20 40 60 80 100 120 140
–40

–20

0

20

40

t(g/Req)1/2
A

ng
le

 (
de

g.
)

Figure 5. Evolution of the inclination angle with respect to the vertical (solid line) and of
the drift angle β (dashed line) during the zigzag.
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Figure 6. Lateral force and torque balances during the helical motion. (a) Force balance in
the y ′-direction (y ′ is horizontal and points toward the centre of curvature of the trajectory);
(b) force and (c) torque balance in the z′-direction (which points downward and is such that
the (x, z′)-plane is vertical). For meaning of line styles see figure 4.

torque Γωz. Hence the time rate-of-change term [� · dΩ/dt]z remains small along the
whole path. Since the geometrical anisotropy of the bubble is large, so is the difference
between the longitudinal and transverse components of �. Therefore Uy/Ux keeps
small values, so that the direction of the bubble velocity remains close to that of the
minor axis along the whole path. This is consistent with the experimental observations
of Ellingsen & Risso (2001) who noticed that the drift angle β = tan−1(Uy/Ux) was
within the error bar of their optical measurements at all times. Here, as shown in
figure 5, this angle is found to oscillate about zero with a maximum amplitude about
2◦, the drift angle reaching its extrema close to the positions where the inclination
angle is zero, i.e. close to the extremities of the zigzag. Coming back to the y-force
balance, it is important to notice that the corresponding components of the buoyancy
force and the centripetal added-mass force are 90◦ out of phase (see figure 4b), while
Fωy is shifted with respect to both of them. For instance, the transverse component of
the buoyancy force reaches its extrema at the inflection point of the zigzag, while the
centripetal added-mass force is zero there, owing to the vanishing of Ωz. This implies
that the maximum inclination angle of the path, θmax, is determined by the value of
the vortical force Fωy at this moment. Similarly, gy vanishes at each extremity of the
zigzag, leaving Fωy and Ωz(� · U)x in balance. Therefore the maximum of the bubble
rotation rate, Ωmax, is determined by the corresponding value of Fωy .

To analyse the lateral force and torque balances during the helical stage, we project
them onto the (x, y ′, z′) axes defined above, noting that the helix in figure 1 is
clockwise and has a pitch angle close to 27◦. As shown in figure 6, these balances
follow straightforward evolutions once the trajectory becomes close to an exact
circular helix (t(g/Req)

1/2 > 270). Again the vortical torque Γωz′ is essentially balanced
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Figure 7. Compared evolutions of ‖Fωx‖ and ‖Fs‖ derived from Moore’s (1965) prediction:
(a) complete evolution; (b) zoom over one period of the zigzag. Thick line: computed drag
Fωx; thin line: Moore’s (1965) prediction Fs .

by the restoring added-mass torque which acts to maintain a small constant drift
angle. The main difference with the zigzag is encountered in the lateral force balance,
where buoyancy and added-mass effects now act in two perpendicular directions.
More precisely, Fωy ′ is centripetal and is essentially balanced by the centrifugal force
−Ωz′(� · U)x while Fωz′ is balanced by the transverse component of the buoyancy
force −ρϑgz′ . Hence the y ′-force balance determines the rotation rate Ωz′ while the
z′-balance determines the pitch angle θ .

3.3. Wake-induced drag

It is of interest to compare the evolution of Fωx with that of the drag Fs the
bubble would experience if its wake were axisymmetric. For this purpose, knowing
the instantaneous bubble Reynolds number Re = 2Req‖U‖/ν, we evaluated Fs(χ, Re)
using Moore’s expression for the drag of an oblate bubble rising steadily at large
Reynolds number (Moore 1965). The comparison is displayed in figure 7. During the
zigzag and helical stages, Fs has values consistently smaller than Fωx; the maximum
value of the difference ‖Fωx‖−‖Fs‖ is about 0.22 ρϑg during the zigzag and increases
to 0.3ρϑg in the helical stage. This difference may be thought of as an additional
drag resulting from the ‘sucking’ of the bubble by its three-dimensional wake. More
precisely, the cores of the two counter-rotating vortices are low-pressure regions which,
compared to the axisymmetric situation, increase the pressure difference between the
front and back regions of the bubble. During the zigzag, Fωx and Fs oscillate with the
same frequency but are about 90◦ out of phase. Comparing figure 7(b) with figure 4(b)
reveals that the minimum of ‖Fωx‖ − ‖Fs‖ and the vanishing of Fωy occur at the
same instant and that both components of the vortical force reach their maxima
simultaneously. This is a clear indication that, similar to the lateral force Fωy , the
wake-induced drag is due to the three-dimensionality of the wake, whereas Moore’s
prediction Fωx =Fs is almost recovered as soon as the wake recovers its axisymmetry.

4. Influence of the bubble kinematics on vortical effects
The material in the previous section allows us to better understand how the bubble–

fluid system satisfies Newton’s second law for a given evolution of the vortical force
and torque along two- or three-dimensional trajectories with a given geometry. It
may also provide insight into the way the variations of U and Ω (which also includes
those of the drift angle β) influence Fω and Γ ω. More precisely, figure 8 makes it clear
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Figure 8. Evolution of the streamwise vorticity in the wake during the helical motion;
(a) t(g/Req )

1/2 = 310.9; (b) a quarter of a period later; (c) half a period later.
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Figure 9. Evolution of the streamwise vorticity in the wake during one period of the zigzag.

that, from the beginning of the helical stage, the three-dimensional wake reaches a
stationary structure. Figures 2 and 6 confirm that during this stage the wake delivers a
constant force Fω and a constant torque Γ ω and that the corresponding balances are
stationary in the appropriate system of axes. This allows us to conclude that, in the
range of Reynolds number and aspect ratio considered here, the wake and the associ-
ated dynamical effects reach a steady state in presence of constant U and Ω . The ques-
tion is then to better understand what happens during the zigzag motion where both
quantities vary periodically. Figure 9 shows how the three-dimensional wake structure
evolves during one period of the zigzag. The coupling between the variations of U
and Ω and the strength and sign of the two streamwise vortices is striking. This sign
appears to be directly related to the rotation of the bubble which induces a slight asym-
metry in the flow, with velocities larger on the side opposite the centre of curvature of
the path. This asymmetry, which reaches its maximum at each extremity of the zigzag,
results in a maximum velocity difference about 0.1Ux between the two opposite sides
of the bubble. While small, this difference turns out to be sufficient to drive the sign
of the streamwise vortices. Note however that there is a significant time delay (about
3.5(Req/g)1/2 according to figure 4, i.e. 10Req/Ux) between the vanishing of Ωz at the
inflection points of the path (points b and e in figure 9) and the change of sign of the
trailing vortices near points c and f . The variations of U and Ω may also be evaluated
to obtain the magnitude of the accelerations undergone by the bubble. It turns out that
the relative variation of Ux between the extremity and the inflection point of the path
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is about 10 %, which results in a maximum acceleration |dUx/dt | (reached midway
between the extremity and the inflection point of the zigzag) about 0.09g. The trans-
verse acceleration |dUy/dt | and the angular acceleration Req |dΩz/dt | (both reached
at the inflection point) are about 0.03g and 0.05g, respectively. The corresponding
decrease (resp. increase) in the bubble velocity from a to b and d to e in figure 9 (resp.
from b to d and from e to the next point a) are associated with dramatic changes in the
wake structure. More precisely, figure 4(b) indicates that Fωy vanishes approximately
midway between each inflection point and the next extremity of the zigzag (points
c and f in figure 9), i.e. this vanishing almost coincides with the maximum of the
streamwise acceleration. Similarly, the maximum of |Fωy | occurs midway between the
extremity of the zigzag and the inflection point, i.e. it coincides with the maximum of
the streamwise deceleration. In other words |Fωy | decreases from its maximum to zero
during the part of the motion where d2Ux/dt2 is positive and then grows from zero to
this maximum when d2Ux/dt2 is negative. Figures 4 and 9 also make it clear that the
vanishing of Fωy almost coincides with that of the streamwise vortices (i.e. it happens
close to points c and f ), while |Fωy | reaches its maximum when the intensity of the
vortices in the near wake is the strongest (which occurs in between points a and b or
d and e, as indicated by the diameter of the vortices just at the rear of the bubble).

While at present qualitative, the above observations show that the wake dynamics
are extremely sensitive to the changes in U and Ω , as the changes of sign of Ωz

combined with modest levels of velocity variations and acceleration turn out to
be capable of forcing the three-dimensional wake structure to disappear and then
reappear following a non-intuitive evolution. Detailed numerical investigations with
imposed evolutions of U(t) and Ω(t) are required to explore this sensitivity in more
detail and open the route toward rational low-dimensional models of Fω(t) and Γ ω(t).
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